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An analytic solution of the axisymmetric problem of unsteady convective 
diffusion at the surface of an absorbing drop is obtained for a wide class of 
unsteady flows of a viscous incompressible fluid o Explicit formulas for the 
dependence of diffusion fluxes on time are derived in the case of steady tran- 
slational and purely shear flow around at low Reynolds numbers and unsteady 
diffusion. The asymptotics of solution of the problem of diffusion on a bubble 
in a uniformly accelerating stream are obtained for short times. 

1. Unsteady diffusion on the surface of an absorbing drop.The 
genera 1 I olu t 1 on. Let us consider the process of unsteady convective diffusion on 
the surface of a spherical drop in a viscous fluid stream, on the assumption of a high 

P&let number. On the assumption of total absorption of the substance dissolved in the 
stream on the drop surface and constant concentration away from it, using the boundary 
layer approximation, we write the dimensionless equation of convective diffusion as 

ac -- 
at 

+ (1-1-V a(C,$C1) 
7--== a (Y, 0) 

@$ p_ y 1 (1.1) 

c (t, y, W) = 1, c (t, 0, e) = 0, c (t, 00, e) = 1 

where r = y + 1, (I is the spherical system of coordinates attached to the drop center 
with angle 0 measured from the efflux trajectory 6+ (from the direction of flow at 
infinity in the case of translational flow past the drop); c is the concentration; D is 

the coefficient of diffusion ; 3) is the stream function ; ij (c, 9) / i) (y, 0) is the 

Jacobian of functions c and I./ ; the measurement units are: the drop radius a, the char- 

acteristic velocity (at infinity) u, and time a / u. 
The first boundary condition in (1.1) corresponds to the usual condition of flow-on 

( the singular streamline e-(0+ ) on which the normal velocity component near the 

particle is directed toward (away from) its surface is called the flow - on ( flow - off) 

trajectory [ l] ). 
We assume that the stream function near the drop (bubble) surface may be repre- 

sented in the form 

As will be shown in Sect. 3 , the representation (1.2) is valid for translational and 

shear flows past a bubble. 
TO simplify the analysis we consider below the region cr = {e+ < 0 < (I-} where 

f (0) > (j and the flow-on e- and flow-off e+ trajectories are defined as follows : 
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f (e-) - f (e+) = 0, - -~<<[ff3'/sin&~--<0 (1.3) 

0 < [fe’ I sin B&3+ < 00 

The more general case of an arbitrary number of critical lines on the drop surface 
can be considered in a similar manner [ 1). 

We seek particular solutions of Eq, (1.1) without specifying initial conditions, and 
introduce the new variables 

rl = J?/f(@, 5 = 5 (t, 8) (1.4) 

assuming that the concentration c = c (TJ , 5) depends only on these, Equation (1.1) 
then assumes the form 

( 51’ - Q (t) f (0) 
si* 8 6e’) ~ = f2(e) ~ 

If function 5 = 5 (t, 0) is taken as the solution of the equation 

ac -- Q (t)f (0) 
at sin0 

ac _ f2(e) 

a0 

(1.5) 

(1.6) 

the problem of convective diffusion reduces to the conventional equation ot heat conduction 

dcl ag = PC/&j2 (1.7 1 

We now determine 5 = f; (t, 0) from Eq. (1.6) which is equivalent to the fol- 
lowing system of ordinary differential equations : 

at sin 8 d0 -=- d5 -- 
1 Q(r)f (6) - f”(Q) (I.6 ) 

Integrating the first and the last two of Eqs. (1.8 ) wc obtain 

G(t,e)=Sn(f)df+t(e)=C, (1.9) 
0 

5 = - i f (8 sin En-l It (El Cl)1 dF, + C9, J(0) == [ * sin Ef-l (5) @ 
8, 

‘e 
I 

where 81 and 0a are some angles of which 81 does not determine critical point of the 
drop surface (f (Cl,) # 0). and function t (0, c,) is obtained by solving the first of 

Eqs. (1.9) for t, i.e. c [t (e, c,), 81 =_ cl, From this we obtain the general solution 

of Eq. (1.6 ) is ( F is an arbitrary function ) 

5 = - [ f (9 sin gQ-l[t (E, Cl)] R + F [G (1, B)l (1.10) 
or 

Function 5 is determined with an accuracy to within the constant and the integral 

z (ts)-+co when 8 + fj- (for the considered class of functions f (0) whose pro- 
perties ace defined by (1.3) and f (0,) # 0) which follows from the expansion of 
x (0) in Taylor series in the neighborhood of point 0 = Q-. Hence by selecting 02 
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as the flow-on trajectory e2 = O- and setting F (m ) = 0 we obtain the following 
system of boundary conditions for Eq. (1.7 ): 

c (q, 0) 1:: 1, c (0, p) = 0, c {oo, 5) = 1 (1.11) 

The solution of problem (1.7 I, (1.11) is of the form 

Initial condition for the input problem (1. 1 ), (1,2), as implied by (1.9 ) t is given 
by formula (1.12 ) where 

For the diffusion boundary layer thickness 6, and for the differential and total dif- 
fusion fluxes on the drop surface from (1.4) and (1.12 ) we obtain 

a e+ 

Since f (W) i= 0 and 5 (t, 8+) # 0 (see (1.31, (1.9),and(l.l0) where& 

zz (J-j, the diffusion boundary layer thickness 6 becomes infinitely great at the 
flow- off point : 6 -+ oo, and 8 -+ 8+. 

When the flow is stabilized LI(t) =32 f2@) = const and the assumption F (oo) 
_ I-J is valid, the concentration distribution and the diffusion flux on the drop surface 

settle, as implied by (1.9 > , (1.10 ) , (1.12 ) , and (1,14 ) , in the steady mode [ 1 ] 

Further on we shall seek the explicit form of the solution of problem (I, 11, (1.2 ) 
with two different initial conditions (see Sect. 2) 

e(X) 
f = 0, c .-= 1, &J y= Cl (Pa(x) = \ f (5) sin &L-r [! (& r)j d& (1.16 1 

I?- 

Function 0 =L= 0 (X) is obtained by the inversion of function x --. x (e), defined 
in (1.9 ). In these formulas and in what fouows the subscripts a and @ denote quantities 
related to the first (1.16 ) and second (1.17 ) initial conditions, respectively . As seen 
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from (1.12) and (1.13)) the first initial condition implies that when t < 0 the con - 
centration in the stream is initially constant and then suddenly the reaction begins to 
take place at the drop surface (a similar problem was considered in [ 21 for the case of 
stabilized potential flow around a spherical drop of a translational stream of perfect 
fluid ) . The second condition corresponds to the state when the substance concentration 
distribution in the fluid at the initial instant of time is determined by a steady diffusion 
mode with Q(O) = 1. 

2. Convective diffusion to a bubble in the case of uniformly 
translational and shear streams. We shall derive the solution of problem 
(I.. 1) , (1.2 ) with initial conditions (1.16 ) and (1.17 ) . 

Let us consider the unsteady diffision to a bubble in an u~teady~un~formly trans - 
lational and shear streams. We assume the following time dependence : 

$2 (t) = (1 + wt)-l (2.3) 

Function Sz (t) may be represented as 

Q (t) = 1 + Q(l) (t), Q(l) (t) = -wt (1 -j- wt)-’ 

Such velocity field near the surface is the result of superposition of the unsteady stream 
*Cl) zzz l/sG(l) (t) y sin2 8 on the steady stream +fO) = r/g sins fj [ 41. At small 
times function Q(l) (t) + _ Wt,and when t ef coit reaches the limit value equal minus 
unity, 

In what follows, the solution of problem (1.1) , (1.2 1, (2.1 f may be used for ana- 
lyzing unsteady diffusion in a stabilized flow (w 3 0) past a bubble. Moreover, it 
will be shown in Sect .4 that several terms of the expansion of that solution when t is 
small (up to the first term containing w.inclusively ) provide the asymptotics of solution 
of the problem of the uniformly accelerated flow field. 

T r a n s 1 a t i on a 1 s t r e a m . For such stream the stream function is determined 
by formulas (1.2) and (2.1) where f (0) = l/a sin2 8 , and angles 0+ =0 and 

0- = a, define,the flow-off and flow-on trajectories, respectively [4]. Using the 
results obtained in Sect. 1, we obtain the following first general solutions of system (1.8 1: 

51 (t) [(i + cos 0) I (1 - cos 0)P = Cl (2.2) 
A 

5 = - (zc,)-” $ sin3 E ctg2” (*) dg + C2 
n 

From this we obtain the expressions for variables 5, and 11 with the first (1.16 ) and 
second (1.17 ) initial conditions, respectively, 

CCL = 4sz-’ (t) tg2zL’ (0 / 2) [B (cos2(8 / a>, 2 + w, 2 - UY) - 
B (2 (& q, 2 + w, 2 - w)] (2.3) 

gp = co* + &&, qa = Q = l/,P’Iy sin2 0 

i&* = 22s - 4]sz3, co* it=* = 50 

2 = 2 (t, 0) = 11 + fi-l/m (t) tgz (e / 2)j-1, R tx, P, q) = 
x 

5 EP-1(1 - E)“-1 dg 
(r 
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where B (x, p, I) is the incomplete beta function,and the diffusion boundary layer 
thickness and the diffusion fluxes on the bubble surface are determined by formulas 
(1.14) and (2.3). 

When w > 0 and t -+ oo we have for 5 the following asymptotic representation : 

t-+00, &,p -+ 452-yqtgy3/2p (cos2(0/2), 2 + w, 2 - w) (2.4) 

Fig. 1 

Hence in the case of considerable 
times the total and local diffusion 

fluxes (1.14 ) assume the same mode 
and tend to zero in inverse proportion 

to I/t. The latter means that the 
diffusion boundary layer thickness 6 

increases in proportion to I/t; i. e. 
the diffusion boundary layer approxi- 

mation (1.1) becomes invalid when 
the time is fairly long, and it is nec- 
essary to consider the process of dif- 

fusion without allowance for convec- 

tive transfer, This is also clear if one 
takes into account that in the case of 

considerable time the bubble velocity 
is low, which corresponds to low 

P&let numbers. 
Let us now consider the case of 

the stabilized flow. For this we direct 

in formula (2.3 ) w to zero, Note that in the considered case the problem of convective 
diffusion with initial condition (1.17 ) reduces to that of conventional steady diffusion 

[ 1 - 3 1. Hence problem (1.1) with initial condition (1.16 ) is of interest, since it is 
there that unsteady diffusion occurs under steady flow conditions, 

Taking into account that ~-flu’ (t) -+ et when w + 0, from (2.3 ) we obtain 

L(t, cl) = liJcos 8 - 113 cos3e + l/3 (V - 1)3(V _1- l)-3-q - 1). (2.5) 

(V + 1)-l] 
V = I/ (t, e) = evt Ctgye :i 2) 

From this, using the substitution 1 = cos 8, for the total diffusion flux on the 
bubble surface we obtain the expression 

(2.6) 

The functional dependence Ia = I, (t) / I, (oo) is shown in Fig. I by curve 1. 
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It will be seen that the total flux on the bubble surface rapidly (exponentially ) attains 

thesteadymode (t-too, [3] >. 

she a r s t r e a m . In this case the stream function near the bubble surface is defined 
by formulas(1.2)and(2.1),where f(e) =3 sin2 8 COS 8, 8,; = 0, oaf = nare 

flow-off trajectories, and 8i- = rr / 2 is the flow-on trajectory [ 51. 
The first general solutions of system (1.9 ) are 

COSQ 
Q (d 

- = cl, tg% 
5 = ($) c;’ s hY/* (1 - h)1-v/2dh + C2, y = $ (2.7 ) 

0 

(the substitution h = cos” e) was made in the last integral). Thickness 6 and the dif- 
fusion fluxes J’ and 1 are determined by formulas (1.14 ) where variables 5 and v at 

the first (1.16 ) and second (1.17 ) initial conditions are, respectively, 

ga = 3:&-1 (t) tgWB (cos2 8, 1 + y / 2,2 - y / 2) - 
(2.8) 

B (m (6 e), 1 + y / 2,2 - y / 2)l 

sp = cd* -!- ia, qa = ‘1~ = 3W y sin2 8 cos 8 

CO* = 3/,[1 - s?-4’~ (t) tg*emyt, e)], co* llzo = co 

m (t, e) = [l + tg2 os2-2i~ (t)]-1 

which for w > 0 (y > 0) and considerable times yield for 5 the asymptotic expression 

It is evident from (2.9) that in this case function 5 behaves similarly to the COT - 
responding function I; in the case of uniformly translational stream when t --f 00 , hence 

all of the reasoning related to the latter is also valid here. 

Directing in (2.8 ) w + 0 (y --+ 0) we obtain the problem of convective dif - 
fusion under condition of stabilized flow, As in the case of translational stream with 
stabilized flow past the bubble, problem (1. 1 ), (1.17 ) leads here to the solution that 

defines steady diffusion [ 6 1. 
The solution of problem (1.1) , (1.16 ) is obtained by passing in formula (2.8 ) to 

limit u7 + 0 (y -+ 0). For the variable j, and the total diffusion flux we have 

ccc = --:$ *[sin4 8 - (e+ ctg2 8 + 1)-21 
(2.10) 

1,=41’%LW~(3t); I,_4],‘%ZLcr, 

The dependence 1,’ = 1, (t) / I, (oc ) is shown in Fig. 1 by curve 2. In this case 
the total diffusion flux exponentially attains the steady mode. 

3. The velocity field of fluid in an unstable flow past a bub- 
ble at low Reynolds numbers. As shown in Sect. 1 and 2, the solution of the 
problem of convective diffusion on the bubble surface in an unsteady flow requires the 
determination of the flow field near that surface by the given velocity distribution in the 
fluid away from it, i. e. to determine the specific form of function 52 (t) in (1.2) , 

We shall consider here the translational and shear streams at infinity. The first ob- 
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t&s when a bubble rises in a viscous fluid, and the second clccurs, for instance, when 

ffie bubble moves in a divergent (or convergent) flow in a conical channel. 
‘The ~~~~~~~ a& boundary c~d~~on~ for the stream function * = -gtoi (rF Bf -f- 

@I (z, P, 8) tQ’0’ is the stream hrnction corresponding to stabilized motion with 

t < 0) are as EolXows: 

wher@ n = 1 Mates to a uniformly translational, stream and n = 2 ta a shear one 
<here and in what follows the subscript, n is omitted S except when this could result in 

cor&sion ); “rff f and t~~<*) are velocity com~~e~~ of the Buid, The u&s of leng& 
time I and velocity are selexted as fc~llows : the bubble radius a, az~-i (‘v is the kinematic 
viscosity of fluid), and U = E.‘, (2 - n) -t czOa (n - 1) (U, is the stream velocity at 

infinity 4~ = 1) and cz is the coeffi~+k~~t of shear 176 = 21 ) t respectively _ 
The boundary conditions which define the ~rn~errn~b~~ty of the bubbfe boundary S 

absence in it af shearing stresses * and also the behavior of the stream function at infinity 

are of the form 

r I i, s$~~zO, ~~~~~~~~~~~~~~~~ 
@*2f 

r-rca, $'j --/~nu~'~(r)rn+~sir~ecos~-~~ (U(')(O) zG* c)) 

We seek a so&&ion of problem f&l ), f3.2 ) of the form 

g{-rJ = CD (r, r) sin2 8 COP B 

Applying to (3,1> the Laplace transformation we obtain the following equation for 

images : 

Using the commutivity of operators in the left-hand side of this equation we abl;rin 
its general solution 
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x1 (r, s) = 3 (1 + s%)/(3 + s”‘), x, (r, s) = 5 (3 A- 3s% + sr2)/(5 + 5s”X+ s) 

where u* (s) are images of functions ~(1) (z). Note that the expression for Q,+’ in 
(3.3 ) in the case of translationalstream (n = 1) was obtained earlier (see, e. g., [7 -91). 

Since in images the transition. to limit s + 03 corresponds to ‘c + 0 in the 
originals, hence from formulas (3.3 ) we obtain 

z -0, *Jr) + l/snu(l) (z) (P+l - rBn) sir-9 6 cos? 3 (3.4) 

In what follows we shall need the velocity field in the fluid near the bubble surface. 
Expanding (3.3) in series in Y = r - 1 we obtain 

g(l) = QtK(‘) (t) y sin2 6 coP6 + 0 (y2) 

o-j-i00 
1 

K(l) (z) = 2ni 
s 

e%(l,s)u*(s)ds 
o--im 

(3.5 > 

Since z= tfR (R= Ua lv is the Reynolds number), it follows from (3.5) that 
the stream’ftmction near the particle surface can be represented in both cases of uni - 
formly translational (n = 41 and shear (n = 2) flows in the form (1.2) where Q (t) 
2 Q(O) + p(l) = [2n - 1 + K(1) (z)]n / 2. 

Functions x (1, s) have the following properties: 

s-0, x(l,s)-+2n-I; s-00, x(l,s)+2n+1 

which means that when appropriate limits exist, the relationships 

z - 0, $1) (t) 4 (Xn + 1) u(l) (t) 

r --P co, K(1) (z) - (2n - 1) u(1) (z) 
(3.6) 

are satisfied. Note that the first of these may be also obtained from (3.4) by expanding 
it in series in the small quantity y = r - 1. 

Let us consider a specific example of the determination of function ~(1) (z). For 
this we take functions u(l) (t) of the form 

+’ (r) = z + %/s 1/r+, up’ (z) = l/s T/z% (2Or + 15 v/;;; + 6) 

from which, using (3.5 ), we obtain 

K?) (z) = z j 2 I/z+, IQ’ (t) = 5 v/z/n (42 + 3 JGG $2) 

Thus for determining velocity fields near the bubble surface ( i. e. for determining 
function Q (t) ) conforming to a given flow away from a particle it is necessary to 

determine function K(l) (z) in formula (3.5 ) , i . e. to perform the inversion of 
the Laplace transformation of known functions. Then, taking into consideration that 

r = t / R, to pass to formula (I.. 2 ) and solve the related problem of diffusion (Sects. 1 
and 2 ) . In the case of arbitrary times it is necessary to resort to numerical methods, 

and when t -+ 0 it is possible to obtain an analytic solution (see Sect. 4 below ). 

4 Th.e asymptotic behavior of solutions in the case of short 
times. Let us analyze the asymptotic behavior of solutions of problem (1.1) with 

initial conditions (1.16 ) and (1.17 > and t --t 0. For the translational flow past the 
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bubble by directing t to zero in (1.14) and (2.3 ) we obtain for total diffusion fluxes 
the following asymptotic expressions : 

t-0, I,(t)=4l/nP/t[l +(5/72)t”-(7/72)wt3+O(t4)] (4.1) 

1r, (t) = 4/3 piiF [I - 3/b (2 1/z-- 3) WP + 0 (P)] 

By directing t to zero in (1.14 ) and (2.8 ) in the case of shear flow we obtain for 
total fluxes the respective asymptotic formulas 

f - 0, 1, W = 4 v-@ / t [I + 3/2t2 - 6/, (81 + 7w) t3+0 (tq] (4.2 ) 

16 (t) = 4 I’= [ 1 - 3/4 (3n - 8) wt” + 0 (t”)] 

Formulas (4.1) and (4.2 > imply that in the case of the first initial condition the 
total diffusion flux approaches infinity when t j 0 . This is due to the mismatching 

of the initial c (0, 0, f3) = 0 and boundary c (0, y-t + 0,O) = 1 conditions in 

(1.16 ) and (1.1). 
Formulas for total diffusion fluxes (4.1) and (4.2) remain valid when t ---f 0 for 

any K (‘6) defined as follows: 

1~, = l/a nK (T) y sin2 8 cosndl 8, K (z) = 2n - 1 + Kc’) (T) 

Kc’) (0) = 0; dK /! ijt -+ - (:n - i)w, t -+ 0, (.t = R-‘t) 

which is accurate to the first term with coefficient w in the expansion i.n powers of t. 
Taking this property into account the coefficients of transition (3.6 ) we shall investigate 

the convective diffusion on the surface of a bubble subjected to a uniformly accelerated 
motion defined by 

r-+ cx), 4 --z 1/2?lrr (r) r lxtl sin” 8 COP+ H 

u (z) = 1 + u(l) (T) = 1 + s br 

where the coefficient at br is chosen for convenience. At small a to this formula 
correspond the following functions K (T) and 52 (t): 

K (.t) = (27~ - I)(1 + ba) (.c = R-‘t) 
(4.3 ) 

Q (t) = 1 + bR-‘t 

It follows from relationships (4.3 ) that w = -bR-I. Hence using formulas 
(4.1) and (4.2 ) we obtain for total diffusion fluxes in the cases of translational (n = 1) 
and shear (n = 2) flows the following expressions : 

Ifi (t) = Ip (0) [ 1 + M,,bR-‘P + o(t2)l (4.4) 
M, = a/s (:! r/s - 3), M2 = 3/4(3n; - 8) 

It will be seen that formulas (4.4) do not contain the first term of expansion 1, 
in series in t. The second term contains 1 / R as a factor, The contribution of this 

factor to the total diffusion flux, on assumptions made above (R < 1) , is significant. 
Note that the total flux increases with increase of speed of the bubble and diminishes 

with its deceleration. 
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